Anhydrous Proton Conduction in Crystalline Porous Materials with a Wide Working Temperature Range
Crystalline porous materials (CPMs), exhibiting high surface areas, versatile structural topologies, and tunable functionality, have attracted much attention in the field of proton exchange membrane fuel cells (PEMFC) for their great potential in solid electrolytes. However, most hydrated CPM proton...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-09, Vol.13 (35), p.41363-41371 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Crystalline porous materials (CPMs), exhibiting high surface areas, versatile structural topologies, and tunable functionality, have attracted much attention in the field of proton exchange membrane fuel cells (PEMFC) for their great potential in solid electrolytes. However, most hydrated CPM proton conductors suffer from the narrow working temperature and the high water/humidity dependence. Considering the practical application in different working environments, CPMs with high anhydrous conductivity from subzero to moderate temperature (>100 °C) are desirable, but it is still a huge challenge. Herein we summarized our recent research work in the anhydrous CPM proton conductors, including to rationally tune the structures of CPMs by using the strategies of pore engineering and protonic species control to achieve wide working temperature conduction, as well as to clarify the conducting mechanism. This spotlight will provide clues to flexibly design and fabricate wide-working-temperature CPM conductors with high protonic conductivity. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c10351 |