Nitric Oxide Induction in Peritoneal Macrophages by a 1,2,3-Triazole Derivative Improves Its Efficacy upon Leishmania amazonensis In Vitro Infection

1,2,3-Triazole is one of the most flexible chemical scaffolds broadly used in various fields. Here, we report the antileishmanial activity of 1,2,3-triazole derivatives, the ultrastructural alterations induced by their treatment, and the nitric oxide (NO) modulation effect on their efficacy against...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2021-09, Vol.64 (17), p.12691-12704
Hauptverfasser: Almeida-Souza, Fernando, da Silva, Verônica Diniz, Taniwaki, Noemi Nosomi, Hardoim, Daiana de Jesus, Mendonça Filho, Ailésio Rocha, Moreira, Wendel Fragoso de Freitas, Buarque, Camilla Djenne, Calabrese, Kátia da Silva, Abreu-Silva, Ana Lucia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1,2,3-Triazole is one of the most flexible chemical scaffolds broadly used in various fields. Here, we report the antileishmanial activity of 1,2,3-triazole derivatives, the ultrastructural alterations induced by their treatment, and the nitric oxide (NO) modulation effect on their efficacy against Leishmania amazonensis in vitro infection. After the screening of eleven compounds, compound 4 exhibited better results against L. amazonensis promastigotes (IC50 = 15.52 ± 3.782 μM) and intracellular amastigotes (IC50 = 4.10 ± 1.136 μM), 50% cytotoxicity concentration at 84.01 ± 3.064 μM against BALB/c peritoneal macrophages, and 20.49-fold selectivity for the parasite over the cells. Compound 4 induced ultrastructural mitochondrial alterations and lipid inclusions in L. amazonensis promastigotes, upregulated tumor necrosis factor α, interleukin (IL)-1β, IL-6, IL-12, and IL-10 messenger RNA expressions, and enhanced the NO production, verified by nitrite (p = 0.0095) and inducible nitric oxide synthase expression (p = 0.0049) quantification, which played an important role in its activity against intramacrophagic L. amazonensis. In silico prediction in association with antileishmanial activity results showed compound 4 as a hit compound with promising potential for further studies of new leishmaniasis treatment options.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.1c00725