Nanostructured Phthalocyanine Assemblies with Efficient Synergistic Effect of Type I Photoreaction and Photothermal Action to Overcome Tumor Hypoxia in Photodynamic Therapy
Most photodynamic therapy (PDT) paradigms work through the highly O2-dependent type II photoreaction to generate singlet oxygen (1O2). The hypoxic microenvironment of solid tumors severely hampers therapeutic outcomes. Here, we present a novel design that could transfer the photophysical and photoch...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-09, Vol.143 (34), p.13980-13989 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most photodynamic therapy (PDT) paradigms work through the highly O2-dependent type II photoreaction to generate singlet oxygen (1O2). The hypoxic microenvironment of solid tumors severely hampers therapeutic outcomes. Here, we present a novel design that could transfer the photophysical and photochemical properties of traditional phthalocyanine-based photosensitizers from type II photoreaction to efficient type I photoreaction and vibrational relaxation-induced photothermal conversion. These features enable the obtained nanostructured phthalocyanine assemblies (e.g., NanoPcAF) to display excellent phototherapies under both normoxic and hypoxic conditions. Moreover, NanoPcAF has a high level of accumulation in tumor tissues after intravenous injection, and 94% of tumor growth is inhibited in a preclinical model at a NanoPcAF dose of 0.8 nmol g–1 and light dose of 300 J cm–2. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.1c07479 |