Collectively Encoded Rydberg Qubit

We demonstrate a collectively encoded qubit based on a single Rydberg excitation stored in an ensemble of N entangled atoms. Qubit rotations are performed by applying microwave fields that drive excitations between Rydberg states. Coherent readout is performed by mapping the excitation into a single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-08, Vol.127 (6), p.063604-063604, Article 063604
Hauptverfasser: Spong, Nicholas L. R., Jiao, Yuechun, Hughes, Oliver D. W., Weatherill, Kevin J., Lesanovsky, Igor, Adams, Charles S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a collectively encoded qubit based on a single Rydberg excitation stored in an ensemble of N entangled atoms. Qubit rotations are performed by applying microwave fields that drive excitations between Rydberg states. Coherent readout is performed by mapping the excitation into a single photon. Ramsey interferometry is used to probe the coherence of the qubit, as well as to test the robustness to external perturbations. We show that qubit coherence is preserved even as we lose atoms from the polariton mode, preserving Ramsey fringe visibility. We show that dephasing due to electric field noise scales as the fourth power of field amplitude. These results show that robust quantum information processing can be achieved via collective encoding using Rydberg polaritons, and hence this system could provide an attractive alternative coding strategy for quantum computation and networking.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.127.063604