Load-bearing capacity under fatigue and FEA analysis of simplified ceramic restorations supported by Peek or zirconia polycrystals as foundation substrate for implant purposes

The fatigue behavior and FEA analysis of different ceramic materials cemented over distinct substrates for implant-supported crowns were evaluated in this study. Discs of 10 mm in diameter of both restorative and substrate materials were made and randomly allocated into pairs (n = 15) considering th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2021-11, Vol.123, p.104760-104760, Article 104760
Hauptverfasser: Soares, Pablo Machado, Cadore-Rodrigues, Ana Carolina, Souto Borges, Alexandre Luiz, Valandro, Luiz Felipe, Pereira, Gabriel Kalil Rocha, Rippe, Marília Pivetta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fatigue behavior and FEA analysis of different ceramic materials cemented over distinct substrates for implant-supported crowns were evaluated in this study. Discs of 10 mm in diameter of both restorative and substrate materials were made and randomly allocated into pairs (n = 15) considering the two study factors: ‘restorative ceramic material’ (1 mm thickness) – polymer-infiltrated ceramic network (PICN), lithium disilicate (LD), zirconia-reinforced lithium silicate (ZLS), or translucent zirconia (TZ); and ‘foundation substrate’ (2 mm thickness) – polyetheretherketone (Peek) or yttrium-stabilized zirconia (YZ). Adhesive cementation was made with a dual cure resin cement. Fatigue testing was run using the step-stress methodology: initial load of 200 N for 5000 cycles, followed by steps of 10,000 cycles starting at 400 N up to 2800 N or until failure, step size of 200 N, frequency of 20 Hz. Data were analyzed by the Kaplan Meier and log-rank post-hoc tests. Fractography analysis (stereomicroscope and SEM) and FEA were also performed. Both factors under study and their interaction statistically influenced the fatigue failure load (FFL), cycles for failure (CFF) and survival rates (p 
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2021.104760