Chicago sky blue 6B (CSB6B), an allosteric inhibitor of macrophage migration inhibitory factor (MIF), suppresses osteoclastogenesis and promotes osteogenesis through the inhibition of the NF-κB signaling pathway

[Display omitted] Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory mediator involved in various pathophysiological and inflammatory states. Accumulating line of evidence suggests a role for MIF in regulating bone metabolism and therefore a prime candidate for therapeuti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2021-10, Vol.192, p.114734-114734, Article 114734
Hauptverfasser: Jin, Kangtao, Zheng, Lin, Ye, Lin, Xie, Ziang, Gao, Jiawei, Lou, Chao, Pan, Wenzheng, Pan, Bin, Liu, Shijie, Chen, Zhenzhong, He, Dengwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory mediator involved in various pathophysiological and inflammatory states. Accumulating line of evidence suggests a role for MIF in regulating bone metabolism and therefore a prime candidate for therapeutic targeting. In this study, we showed that Chicago sky blue 6B (CSB6B) suppresses RANKL-induced osteoclast and bone resorption in vitro via the inhibition of NF-κB signaling activation and promoting proteasome-mediated degradation of MIF. Consequently, the induction of NFATc1 was impaired resulting in downregulation of NFATc1-responsive osteoclast genes. We also demonstrated that CSB6B treatment enhanced primary calvarial osteoblast differentiation and bone mineralization in vitro via the suppression of NF-κB activation and upregulation of Runx expression. Using two murine models of osteolytic bone disorders, we further showed that administration of CSB6B protected mice against pathological inflammatoryc calvarial bone destruction induced by titanium particles mice as well as estrogen-deficiency induced bone loss as a result of ovariectomy. Together, as an MIF inhibitor, CSB6B can inhibit osteoclast differentiation and bone resorption function and enhance the mineralization of osteoblasts through the inhibition of NF-κB pathway. MIF is a prime target for therapeutic targeting for the treatment of osteolytic bone disorders and the MIF inhibitor CSB6B could be potential anti-osteoporosis drug.
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2021.114734