A proteomic analysis of the effect of ocean acidification on the haemocyte proteome of the South African abalone Haliotis midae

As a result of increasing CO2 emissions and the prevalence of global climate change, ocean acidification (OA) is becoming more pervasive, affecting many trophic levels, particularly those that rely on succinctly balanced ocean chemistry. This ultimately threatens community structures, as well as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish & shellfish immunology 2021-10, Vol.117, p.274-290
Hauptverfasser: Carroll, Sarah L., Coyne, Vernon E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a result of increasing CO2 emissions and the prevalence of global climate change, ocean acidification (OA) is becoming more pervasive, affecting many trophic levels, particularly those that rely on succinctly balanced ocean chemistry. This ultimately threatens community structures, as well as the future sustainability of the fishing/aquaculture industry. Understanding the molecular stress response of key organisms will aid in predicting their future survivability under changing environmental conditions. This study sought to elucidate the molecular stress response of the South African abalone, Haliotis midae, an understudied organism with high economic value, utilising a high throughput iTRAQ-based proteomics methodology. Adult abalone were exposed to control (pH 7.9) and experimental (pH 7.5) conditions for 12, 72 and 168 h, following which protein was isolated from sampled haemocytes and subsequently processed. iTRAQ-labelled peptides were analysed using mass spectrometry, while an array of bioinformatics tools was utilised for analysing the proteomic data. COG analysis identified “Cytoskeleton”, “Translation, ribosomal structure and biogenesis”, “Post-translational modification, protein turnover, chaperones”, and “Intracellular trafficking, secretion and vesicular transport” to be the most enriched functional classes, while statistical analysis identified a total of 33 up-regulated and 23 down-regulated effectors of OA stress in abalone. Several of the up-regulated proteins that were identified function in central metabolism (ENO1, PGK, DUOX1, GPD2), the stress/immune response (CAMKI, HSPA5/GRP78, MAPKI), and cytoskeleton, protein sorting and signal transduction (IQGAP1, MYO9B, TLN1, RDX, TCP-1/CCT, SNX6, CHMP1a, VPS13a). Protein-protein interactions were predicted using STRING DB, Cytoscape and Ingenuity Pathway Analysis, providing a model of the effects of OA on the H. midae haemocyte proteome. The data indicated that H. midae underwent a metabolic shift under OA conditions to utilize more energy-efficient mechanisms of ATP generation, while attempts at restoring haemocyte stabilisation and homeostasis were reflected by up-regulation of oxidative stress and cytoskeletal proteins. Our results support other molluscan studies that report a complex array of overlapping functions of both the stress and immune response systems. This interplay of the mounted stress and immune response is maintained and observed through the up-regulation of proteins involve
ISSN:1050-4648
1095-9947
DOI:10.1016/j.fsi.2021.08.008