The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview

Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2022-01, Vol.422, p.126876-126876, Article 126876
Hauptverfasser: Yang, Hui, Yang, Xuefeng, Ning, Zengping, Kwon, Sae Yun, Li, Mi-Ling, Tack, Filip M.G., Kwon, Eilhann E., Rinklebe, Jörg, Yin, Runsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system. The speciation, transformation, bioavailability as well as the beneficial and hazardous effects of Se in the soil-plant-human system are summarized. Several important aspects in Se in the soil-plant-human system are detailed mentioned, including (1) strategies for biofortification in Se-deficient areas and phytoremediation of soil Se in seleniferous areas; (2) factors affecting Se uptake and transport by plants; (3) metabolic pathways of Se in the human body; (4) the interactions between Se and other trace elements in plant and animals, in particular, the detoxification of heavy metals by Se. Important research hotspots of Se biogeochemistry are outlined, including (1) the coupling of soil microbial activity and the Se biogeochemical cycle; (2) the molecular mechanism of Se metabolic in plants and animals; and (3) the application of Se isotopes as a biogeochemical tracer in research. This review provides up-to-date knowledge and guidelines on Se biogeochemistry research. [Display omitted] •The double-edged sword effect of Se in soil, plants, and humans is reviewed.•Detoxification of Se on heavy metals in the soil-plant-human system is summarized.•Future research hotspots of Se biogeochemistry are outlined.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2021.126876