Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions

[Display omitted] Gold modified thiol graphene (Au@HS-rGO) was prepared and applied as sensing platform for constructing the electrochemical aptasensor. While gold-palladium modified zirconium metal-organic frameworks (AuPd@UiO-67) nanozyme was employed as signal enhancer for detecting mercury ions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-01, Vol.606, p.510-517
Hauptverfasser: Wang, Yaoguang, Wang, Yingying, Wang, Fangzheng, Chi, Hong, Zhao, Guanhui, Zhang, Yong, Li, Tianduo, Wei, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Gold modified thiol graphene (Au@HS-rGO) was prepared and applied as sensing platform for constructing the electrochemical aptasensor. While gold-palladium modified zirconium metal-organic frameworks (AuPd@UiO-67) nanozyme was employed as signal enhancer for detecting mercury ions (Hg2+) sensitively. Herein, gold nanoparticles (Au NPs) were modified on HS-rGO to form the thin Au@HS-rGO layer. Then the substrate strand (Apt1) was modified on the platform through Au-S bond. The signal strand (Apt2) was further decorated on the platform in the presence of Hg2+. Herein, the Apt2 was labeled with AuPd@UiO-67 nanozyme, which exhibited catalase-like properties to catalyze H2O2, thereby generating the electrical signal. With the concentration of Hg2+ increased, the amount of modified Apt2-AuPd@UiO-67 increased, leading to the rise of current response. Since the current responses were linear with concentration of Hg2+, the detection of Hg2+ can be achieved. Under the optimum conditions, the prepared electrochemical aptasensor exhibited wide linear range from 1.0 nmol/L to 1.0 mmol/L, along with a low detection limit of 0.16 nmol/L. Moreover, the electrochemical aptasensor showed excellent selectivity, reproducibility and stability, together with superior performance in actual water sample analysis. Therefore, this proposed electrochemical aptasensor may have promising applications and provide references for environmental monitoring and management.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.08.055