Structural and Morphological Engineering of Benzothiadiazole-Based Covalent Organic Frameworks for Visible Light-Driven Oxidative Coupling of Amines

Covalent organic frameworks (COFs) are appealing platforms for photocatalysts because of their structural diversity and adjustable optical band gaps. The construction of efficient COFs for heterogeneous photocatalysis of organic transformations is highly desirable. Herein, we constructed a photoacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-08, Vol.13 (33), p.39291-39303
Hauptverfasser: Li, Qing, Wang, Juan, Zhang, Yize, Ricardez-Sandoval, Luis, Bai, Guoyi, Lan, Xingwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covalent organic frameworks (COFs) are appealing platforms for photocatalysts because of their structural diversity and adjustable optical band gaps. The construction of efficient COFs for heterogeneous photocatalysis of organic transformations is highly desirable. Herein, we constructed a photoactive COF containing benzothiadiazole and triazine (BTDA–TAPT), for which the morphology and crystallinity might be easily tuned by slight synthetic variation. To unveil the relationship of photocatalytic properties between the structure and morphology, analogous COFs were synthesized by precisely tailoring building blocks. Systematic investigations indicated that tuning the structure and morphology might greatly impact photoelectric properties. The BTDA–TAPT featuring ordered alignment and perfect crystalline nature was more beneficial for promoting charge transfer and separation, which exhibited superior photocatalytic activity for visible light-driven oxidative coupling of amines. Outcomes from this study reveal the intrinsic synergy effects between the structure and morphology of COFs for photocatalysis.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.1c08951