Macrophage-activating lipoprotein (MALP)-2 impairs the healing of partial tendon injuries in mice
Tendon injuries are accounted for up to 50% of musculoskeletal injuries and often result in poor outcomes. Inflammation is a major hallmark of tendon regeneration. Therefore, we analyzed in this study whether the topical application of the pro-inflammatory mediator macrophage-activating lipoprotein...
Gespeichert in:
Veröffentlicht in: | Annals of anatomy 2022-01, Vol.239, p.151818-151818, Article 151818 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tendon injuries are accounted for up to 50% of musculoskeletal injuries and often result in poor outcomes. Inflammation is a major hallmark of tendon regeneration. Therefore, we analyzed in this study whether the topical application of the pro-inflammatory mediator macrophage-activating lipoprotein (MALP)-2 improves the healing of partial tendon injuries. C57BL/6 mice underwent a partial tenotomy of the flexor digitorum longus tendon of the left hind limb, which was treated with a solution containing either 0.5 µg MALP-2 or vehicle (control). Repetitive gait analyses were performed prior to the surgical intervention as well as postoperatively on days 1, 3, 7, 14 and 36. The structural stability of the tendons was biomechanically tested on day 7 and 36. In addition, Western blot analyses were performed on isolated tendons that were treated in vitro with MALP-2 or vehicle. In both groups, partial tenotomy resulted in a pathological gait pattern during the initial postoperative phase. On day 7, the gait pattern normalized in vehicle-treated animals, but not in MALP-2-treated mice. Moreover, the tendons of MALP-2-treated mice exhibited a significantly reduced biomechanical stiffness after 7 and 36 days when compared to controls. Western blot analyses revealed a significantly higher expression of heme oxygenase (HO)-1 and lower expression of cyclin D in MALP-2-treated tendons. These findings indicate that MALP-2 delays the healing of injured tendons most likely due to increased intracellular stress and suppressed cell proliferation in this naturally bradytrophic tissue. Hence, the application of MALP-2 cannot be recommended for the treatment of tendon injuries. |
---|---|
ISSN: | 0940-9602 1618-0402 |
DOI: | 10.1016/j.aanat.2021.151818 |