A systematic approach to decode the mechanism of Cornus in the treatment of hepatocellular carcinoma (HCC)

Cornus Officinalis (Cornus), the dried pulp of mature Cornus, is used to treat liver diseases. However, the pharmacological mechanism of Cornus in the treatment of hepatocellular carcinoma (HCC) has not been systematically studied. The chemical compounds and the bioactive chemical compounds of Cornu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2021-10, Vol.909, p.174405-174405, Article 174405
Hauptverfasser: Shen, Hai-yu, Li, Xiao-qiang, Fan, Wen-qiang, Wang, Yu-wei, Huang, Feng, Wu, Jie-qiong, Zhang, Wei, Feng, Xue-song, Chao, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cornus Officinalis (Cornus), the dried pulp of mature Cornus, is used to treat liver diseases. However, the pharmacological mechanism of Cornus in the treatment of hepatocellular carcinoma (HCC) has not been systematically studied. The chemical compounds and the bioactive chemical compounds of Cornus were screened through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Gene Cards database was used to explore the targets in liver cancer pathogenesis. The disease-drug Venn diagram was constructed using the VENN 2.1 and the STRING database was used to analyze protein-protein Interaction Network (PPI). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using the R package. Molecular docking was performed using Discovery Studio were assessed using Pymol and Discovery Studio 2016. Cell survival of BEL-7404 cells treated by Hydroxygenkwanin (HGK) were valued through CCK-8 assay. Expressions of caspase-3 and cleaved PARP was detected through Western blot. Pharmacological network diagrams of the Cornus compound-target network and HCC-related target network were successfully constructed. A total of 20 active compounds, 1841 predicted biological targets of Cornus, and 7100 HCC-related targets were identified. 37 target genes between Cornus and HCC were screened trough the network pharmacology. Molecular docking studies suggested that HGK has the highest affinity with caspase-3. HGK could induce apoptosis of HCC cells and significantly activate the caspase-3 protease activity in BEL-7404. This study systematically elaborated the mechanism of Cornus in the treatment of HCC and provided a new perspective to exploit Antineoplastic from Cornus.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2021.174405