Parameter Estimation and Variable Selection for Big Systems of Linear Ordinary Differential Equations: A Matrix-Based Approach
Ordinary differential equations (ODEs) are widely used to model the dynamic behavior of a complex system. Parameter estimation and variable selection for a "Big System" with linear ODEs are very challenging due to the need of nonlinear optimization in an ultra-high dimensional parameter sp...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2019-04, Vol.114 (526), p.657-667 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ordinary differential equations (ODEs) are widely used to model the dynamic behavior of a complex system. Parameter estimation and variable selection for a "Big System" with linear ODEs are very challenging due to the need of nonlinear optimization in an ultra-high dimensional parameter space. In this article, we develop a parameter estimation and variable selection method based on the ideas of similarity transformation and separable least squares (SLS). Simulation studies demonstrate that the proposed matrix-based SLS method could be used to estimate the coefficient matrix more accurately and perform variable selection for a linear ODE system with thousands of dimensions and millions of parameters much better than the direct least squares method and the vector-based two-stage method that are currently available. We applied this new method to two real datasets-a yeast cell cycle gene expression dataset with 30 dimensions and 930 unknown parameters and the Standard & Poor 1500 index stock price data with 1250 dimensions and 1,563,750 unknown parameters-to illustrate the utility and numerical performance of the proposed parameter estimation and variable selection method for big systems in practice. Supplementary materials for this article are available online. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1080/01621459.2017.1423074 |