Parameter Estimation and Variable Selection for Big Systems of Linear Ordinary Differential Equations: A Matrix-Based Approach

Ordinary differential equations (ODEs) are widely used to model the dynamic behavior of a complex system. Parameter estimation and variable selection for a "Big System" with linear ODEs are very challenging due to the need of nonlinear optimization in an ultra-high dimensional parameter sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2019-04, Vol.114 (526), p.657-667
Hauptverfasser: Wu, Leqin, Qiu, Xing, Yuan, Ya-xiang, Wu, Hulin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ordinary differential equations (ODEs) are widely used to model the dynamic behavior of a complex system. Parameter estimation and variable selection for a "Big System" with linear ODEs are very challenging due to the need of nonlinear optimization in an ultra-high dimensional parameter space. In this article, we develop a parameter estimation and variable selection method based on the ideas of similarity transformation and separable least squares (SLS). Simulation studies demonstrate that the proposed matrix-based SLS method could be used to estimate the coefficient matrix more accurately and perform variable selection for a linear ODE system with thousands of dimensions and millions of parameters much better than the direct least squares method and the vector-based two-stage method that are currently available. We applied this new method to two real datasets-a yeast cell cycle gene expression dataset with 30 dimensions and 930 unknown parameters and the Standard & Poor 1500 index stock price data with 1250 dimensions and 1,563,750 unknown parameters-to illustrate the utility and numerical performance of the proposed parameter estimation and variable selection method for big systems in practice. Supplementary materials for this article are available online.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.2017.1423074