Spontaneous hydrolysis and spurious metabolic properties of α-ketoglutarate esters

α-ketoglutarate (KG), also referred to as 2-oxoglutarate, is a key intermediate of cellular metabolism with pleiotropic functions. Cell-permeable esterified analogs are widely used to study how KG fuels bioenergetic and amino acid metabolism and DNA, RNA, and protein hydroxylation reactions, as cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-08, Vol.12 (1), p.4905-4905, Article 4905
Hauptverfasser: Parker, Seth J., Encarnación-Rosado, Joel, Hollinshead, Kate E. R., Hollinshead, David M., Ash, Leonard J., Rossi, Juan A. K., Lin, Elaine Y., Sohn, Albert S. W., Philips, Mark R., Jones, Drew R., Kimmelman, Alec C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:α-ketoglutarate (KG), also referred to as 2-oxoglutarate, is a key intermediate of cellular metabolism with pleiotropic functions. Cell-permeable esterified analogs are widely used to study how KG fuels bioenergetic and amino acid metabolism and DNA, RNA, and protein hydroxylation reactions, as cellular membranes are thought to be impermeable to KG. Here we show that esterified KG analogs rapidly hydrolyze in aqueous media, yielding KG that, in contrast to prevailing assumptions, imports into many cell lines. Esterified KG analogs exhibit spurious KG-independent effects on cellular metabolism, including extracellular acidification, arising from rapid hydrolysis and de-protonation of α-ketoesters, and significant analog-specific inhibitory effects on glycolysis or mitochondrial respiration. We observe that imported KG decarboxylates to succinate in the cytosol and contributes minimally to mitochondrial metabolism in many cell lines cultured in normal conditions. These findings demonstrate that nuclear and cytosolic KG-dependent reactions may derive KG from functionally distinct subcellular pools and sources. Analogues of α-ketoglutarate are used in many cellular studies but assumptions are made about cellular uptake. Here, the authors show that esterified analogues rapidly hydrolyse in aqueous medium resulting in an analogue which can be quickly taken up by many cell lines, contrary to prevailing assumptions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25228-9