Graft hyper-branched dendrimer onto WS2 nanosheets modified Poly (N-Vinylcaprolactam) as a thermosensitive nanocarrier for Pioglitazone delivery using near-infrared radiation

[Display omitted] In this paper, graft-copolymerization of N-vinylcaprolactam and allylamine onto tungsten disulfide (WS2) in the presence of AIBN as initiator has been carried out to prepare the WS2@ (NVCL-co-AAm). Subsequent fifth-generation dendrimer was attached to their surface, and used as a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2021-09, Vol.607, p.120985-120985, Article 120985
Hauptverfasser: Sobhani, Mohadeseh, Zieglari, Alireza, Moniri, Elham, Ahmad Panahi, Homayon, Daghighi Asli, Maryam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] In this paper, graft-copolymerization of N-vinylcaprolactam and allylamine onto tungsten disulfide (WS2) in the presence of AIBN as initiator has been carried out to prepare the WS2@ (NVCL-co-AAm). Subsequent fifth-generation dendrimer was attached to their surface, and used as a nanocarrier for the pioglitazone (PG) drug delivery. The resulting polymer was characterized by FTIR, XRD, TEM, EDX, and TGA. We loaded PG onto polymer and evaluated the drug loading and release patterns in simulated human blood fluid (pH 7.4) for the treatment of diabetes in vitro. The thermosensitive nanocarrier indicated a maximum of 98 % PG release in the simulated human blood fluid at 50 °C within 6 h, and about 18 % of total PG was released from the nanocarrier within 6 h at 37 °C. Herein, we studied near-infrared (NIR) radiation as an irritant for inducing PG release from nanocarrier. Also, PG releasing was 100 % under NIR laser irradiation within 15 min, which was roughly four times of that without laser irradiation. NIR laser light heated the nanocarrier, causing shrinkage of the polymer, which increased the penetrability of the membrane and resulted in PG release. Following four adsorption isotherm models, the Langmuir model excellently explained the adsorption isotherm.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2021.120985