2-Indolymethanols as 4-atom-synthons in oxa-Michael reaction cascade: access to tetracyclic indoles

The first Brønsted acid-catalyzed oxa-Michael reaction cascade of 2-indolylmethanols with trione alkenes was accomplished. By using this practical approach, a variety of tetracyclic indoles were readily created in an ordered sequence with excellent regio- and diastereoselectivity. 2-Indolylmethanols...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2021-09, Vol.57 (71), p.8921-8924
Hauptverfasser: Han, Tian-Jiao, Wang, Min-Can, Mei, Guang-Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The first Brønsted acid-catalyzed oxa-Michael reaction cascade of 2-indolylmethanols with trione alkenes was accomplished. By using this practical approach, a variety of tetracyclic indoles were readily created in an ordered sequence with excellent regio- and diastereoselectivity. 2-Indolylmethanols commendably served as four-atom synthons, as opposed to the common three-atom synthons in the previous literature reports. The regioselectivity issue was well handled by the employment of a strong Brønsted acid catalyst. In addition, its dual role in activation of substrates via hydrogen-bonding interaction and acceleration of subsequent intramolecular cyclization and dehydration was proposed to account for the high reaction efficiency. The first Brønsted acid-catalyzed oxa-Michael reaction cascade of 2-indolylmethanols as four-atom synthons with trione alkenes was accomplished.
ISSN:1359-7345
1364-548X
DOI:10.1039/d1cc03653j