Stacked Two-Dimensional MXene Composites for an Energy-Efficient Memory and Digital Comparator

Two-dimensional MXene has enormous potential for application in industry and academia owing to its surface hydrophilicity and excellent electrochemical properties. However, the application of MXene in optoelectronic memory and logical computing is still facing challenges. In this study, an optoelect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-08, Vol.13 (33), p.39595-39605
Hauptverfasser: Guo, Liangchao, Mu, Boyuan, Li, Ming-Zheng, Yang, Baidong, Chen, Ruo-Si, Ding, Guanglong, Zhou, Kui, Liu, Yanhua, Kuo, Chi-Ching, Han, Su-Ting, Zhou, Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional MXene has enormous potential for application in industry and academia owing to its surface hydrophilicity and excellent electrochemical properties. However, the application of MXene in optoelectronic memory and logical computing is still facing challenges. In this study, an optoelectronic resistive random access memory (RRAM) based on silver nanoparticles (Ag NPs)@MXene–TiO2 nanosheets (AMT) was prepared through a low-cost and facile hydrothermal oxidation process. The fabricated device exhibited a typical bipolar switching behavior and controllable SET voltage. Furthermore, we successfully demonstrated a 4-bit in-memory digital comparator with AMT RRAMs, which can replace five logic gates in a traditional approach. The AMT-based digital comparator may open the door for future integrated functions and applications in optoelectronic data storage and simplify the complex logic operations.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c11014