Styrene-Based Poly(ethylene oxide) Side-Chain Block Copolymers as Solid Polymer Electrolytes for High-Voltage Lithium-Metal Batteries

Herein, we report the design of styrene-based poly­(ethylene oxide) (PEO) side-chain block copolymers featuring a microphase separation and their application as solid polymer electrolytes in high-voltage lithium-metal batteries. A straightforward synthesis was established, overcoming typical drawbac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-08, Vol.13 (33), p.39257-39270
Hauptverfasser: Butzelaar, Andreas J, Röring, Philipp, Mach, Tim P, Hoffmann, Maxi, Jeschull, Fabian, Wilhelm, Manfred, Winter, Martin, Brunklaus, Gunther, Théato, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we report the design of styrene-based poly­(ethylene oxide) (PEO) side-chain block copolymers featuring a microphase separation and their application as solid polymer electrolytes in high-voltage lithium-metal batteries. A straightforward synthesis was established, overcoming typical drawbacks of PEO block copolymers prepared by anionic polymerization or ester-based PEO side-chain copolymers. Both the PEO side-chain length and the LiTFSI content were varied, and the underlying relationships were elucidated in view of polymer compositions with high ionic conductivity. Subsequently, a selected composition was subjected to further analyses, including phase-separated morphology, providing not only excellent self-standing films with intrinsic mechanical stability but also the ability to suppress lithium dendrite growth as well as good flexibility, wettability, and good contacts with the electrodes. Furthermore, good thermal and electrochemical stability was demonstrated. To do so, linear sweep and cyclic voltammetry, lithium plating/stripping tests, and galvanostatic overcharging using high-voltage cathodes were conducted, demonstrating stable lithium-metal interfaces and a high oxidative stability of around 4.75 V. Consequently, cycling of Li||NMC622 cells did not exhibit commonly observed rapid cell failure or voltage noise associated with PEO-based electrolytes in Li||NMC622 cells, attributed to the high mechanical stability. A comprehensive view is provided, highlighting that the combination of PEO and high-voltage cathodes is not impossible per se.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c08841