In vitro study on how cold plasma affects dentin surface characteristics

Studies evaluating different features of cold plasma action on dentin surface characteristics are lacking. Thus, this in vitro study aimed to determine the effect of cold plasma under different protocols of exposure time, distance to plasma source, and the association of argon gas with distinct conc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2021-11, Vol.123, p.104762-104762, Article 104762
Hauptverfasser: Strazzi-Sahyon, Henrico Badaoui, Suzuki, Thaís Yumi Umeda, Lima, Glívia Queiroz, Delben, Juliana Aparecida, Cadorin, Bruno Mena, Nascimento, Vanessa do, Duarte, Simone, Santos, Paulo Henrique dos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies evaluating different features of cold plasma action on dentin surface characteristics are lacking. Thus, this in vitro study aimed to determine the effect of cold plasma under different protocols of exposure time, distance to plasma source, and the association of argon gas with distinct concentrations of oxygen on the wettability, surface energy, total free interaction energy, surface roughness, morphology and chemical composition of dentin. One hundred and twenty-five bovine dentin samples were used and divided into twenty-five groups according to the exposure time to plasma (15, 30, or 60 s); distance between plasma source and dentin surface (3 or 6 mm); argon gas without plasma generation; and plasma generated by argon gas and association of argon gas with distinct concentrations of oxygen (2 % or 3 %) (n = 5). Contact angle (θ), surface energy (γs) and total free interaction energy (ΔG) were measured using a goniometer (Krüss), while surface roughness (Ra) was evaluated by a profilometer (Mitutoyo). Representative samples were submitted to scanning electron microscopy (JEOL) to ilustrate the morphology and chemical composition of dentin. Data comparing control group with all experimental groups were submitted to ANOVA followed by Tukey's test (α = .05). Data comparing oxygen gas action at different concentrations and argon gas on dentin characteristics were submitted to non-parametric Kruskal–Wallis test, followed by Dunn test for comparison between the groups and methods (α = 0.05). In general, argon gas without plasma generation promoted no significant difference on dentin surface characteristics compared to control group (P > .05), differently for the cold plasma that significantly reduced contact angle values and increased total free interaction energy of dentin surface (P 
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2021.104762