Hybridization chain reaction and its applications in biosensing

To pursue the sensitive and efficient detection of informative biomolecules for bioanalysis and disease diagnosis, a series of signal amplification techniques have been put forward. Among them, hybridization chain reaction (HCR) is an isothermal and enzyme-free process where the cascade reaction of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2021-11, Vol.234, p.122637-122637, Article 122637
Hauptverfasser: Wu, Jingting, Lv, Jinrui, Zheng, Xiaoqi, Wu, Zai-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To pursue the sensitive and efficient detection of informative biomolecules for bioanalysis and disease diagnosis, a series of signal amplification techniques have been put forward. Among them, hybridization chain reaction (HCR) is an isothermal and enzyme-free process where the cascade reaction of hybridization events is initiated by a target analyte, yielding a long nicked dsDNA molecule analogous to alternating copolymers. Compared with conventional polymerase chain reaction (PCR) that can proceed only with the aid of polymerases and complicated thermal cycling, HCR has attracted increasing attention because it can occur under mild conditions without using enzymes. As a powerful signal amplification tool, HCR has been employed to construct various simple, sensitive and economic biosensors for detecting nucleic acids, small molecules, cells, and proteins. Moreover, HCR has also been applied to assemble complex nanostructures, some of which even act as the carriers to execute the targeted delivery of anticancer drugs. Recently, HCR has engendered tremendous progress in RNA imaging applications, which can not only achieve endogenous RNA imaging in living cells or even living animals but also implement imaging-guided photodynamic therapy, paving a promising path to promote the development of theranostics. In this review, we begin with the fundamentals of HCR and then focus on summarizing the recent advances in HCR-based biosensors for biosensing and RNA imaging strategies. Further, the challenges and future perspective of HCR-based signal amplification in biosensing and theranostic application are discussed. [Display omitted] •The basic principle and features of hybridization chain reaction (HCR), especially strategies for improving HCR assay.•Recent advances in HCR assay of disease-related biomarkers, including intracellular nucleic acids and proteins.•The latest HCR-based researches focusing on the intracellular and even in vivo RNA imaging.•Challenges and future perspective of HCR-based signal amplification, especially in improving assay and imaging ability.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2021.122637