Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment
Body composition analysis on CT images is a valuable tool for sarcopenia assessment. We aimed to develop and validate a deep neural network applicable to whole-body CT images of PET-CT scan for the automatic volumetric segmentation of body composition. For model development, one hundred whole-body o...
Gespeichert in:
Veröffentlicht in: | Clinical nutrition (Edinburgh, Scotland) Scotland), 2021-08, Vol.40 (8), p.5038-5046 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Body composition analysis on CT images is a valuable tool for sarcopenia assessment. We aimed to develop and validate a deep neural network applicable to whole-body CT images of PET-CT scan for the automatic volumetric segmentation of body composition.
For model development, one hundred whole-body or torso 18F-fluorodeoxyglucose PET–CT scans of 100 patients were retrospectively included. Two radiologists semi-automatically labeled the following seven body components in every CT image slice, providing a total of 46,967 image slices from the 100 scans for training the 3D U-Net (training, 39,268 slices; tuning, 3116 slices; internal validation, 4583 slices): skin, bone, muscle, abdominal visceral fat, subcutaneous fat, internal organs with vessels, and central nervous system. The segmentation accuracy was assessed using reference masks from three external datasets: two Korean centers (4668 and 4796 image slices from 20 CT scans, each) and a French public dataset (3763 image slices from 24 CT scans). The 3D U-Net-driven values were clinically validated using bioelectrical impedance analysis (BIA) and by assessing the model's diagnostic performance for sarcopenia in a community-based elderly cohort (n = 522).
The 3D U-Net achieved accurate body composition segmentation with an average dice similarity coefficient of 96.5%–98.9% for all masks and 92.3%–99.3% for muscle, abdominal visceral fat, and subcutaneous fat in the validation datasets. The 3D U-Net-derived torso volume of skeletal muscle and fat tissue and the average area of those tissues in the waist were correlated with BIA-derived appendicular lean mass (correlation coefficients: 0.71 and 0.72, each) and fat mass (correlation coefficients: 0.95 and 0.93, each). The 3D U-Net-derived average areas of skeletal muscle and fat tissue in the waist were independently associated with sarcopenia (P |
---|---|
ISSN: | 0261-5614 1532-1983 |
DOI: | 10.1016/j.clnu.2021.06.025 |