Review of in vitro mechanical testing for intervertebral disc injectable biomaterials
Many early stage interventions for intervertebral disc degeneration are under development involving injection of a biomaterial into the affected tissue. Due to the complex mechanical behaviour of the intervertebral disc, there are challenges in comprehensively evaluating the performance of these inj...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2021-11, Vol.123, p.104703-104703, Article 104703 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many early stage interventions for intervertebral disc degeneration are under development involving injection of a biomaterial into the affected tissue. Due to the complex mechanical behaviour of the intervertebral disc, there are challenges in comprehensively evaluating the performance of these injectable biomaterials in vitro. The aim of this review was to examine the different methods that have been developed to mechanically test injectable intervertebral disc biomaterials in an in vitro disc model. Testing methods were examined with emphasis on overall protocol, artificial degeneration method, mechanical testing regimes and injection delivery. Specifically, the effects of these factors on the evaluation of different aspects of device performance was assessed. Broad testing protocols varied between studies and enabled evaluation of different aspects of an injectable treatment. Studies employed artificial degeneration methodologies which were either on a macro scale through mechanical means or on a microscale with biochemical means. Mechanical loading regimes differed greatly across studies, with load being either held constant, ramped to failure, or applied cyclically, with large variability on all loading parameters. Evaluation of the risk of herniation was possible by utilising ramped loading, whereas cyclic loading enabled the examination of the restoration of mechanical behaviour for initial screening of biomaterials and surgical technique optimisation studies. However, there are large variations in the duration or tests, and further work is needed to define an appropriate number of cycles to standardise this type of testing. Biomaterial delivery was controlled by set volume or haptic feedback, and future investigations should generate evidence applying physiological loading during injection and normalisation of injection parameters based on disc size. Based on the reviewed articles and considering clinical risks, a series of recommendations have been made for future intervertebral disc mechanical testing.
•A wide range of protocols and techniques are used to assess injectable biomaterials for intervertebral disc degeneration.•Controlled mechanical and biochemical methods should be used to induce artifical degeneartion to assess treatment efficacy.•Ramped compressive load to failure is necessary to assess risk of catastrophic failure e.g. herniation .•Further investigation into change in disc mechanics over time from cyclic testing is required.•Unde |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2021.104703 |