Au Nanorings with Intertwined Triple Rings

We designed complex Au nanorings with intertwined triple rings (ANITs) in a single entity to amplify the efficacy of near-field focusing. Such a complex and unprecedented morphology at the nanoscale was realized through on-demand multistepwise reactions. Triangular nanoprisms were first sculpted int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-09, Vol.143 (37), p.15113-15119
Hauptverfasser: Yoo, Sungjae, Go, Sungeun, Son, Jiwoong, Kim, Jeongwon, Lee, Soohyun, Haddadnezhad, MohammadNavid, Hilal, Hajir, Kim, Jae-Myoung, Nam, Jwa-Min, Park, Sungho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We designed complex Au nanorings with intertwined triple rings (ANITs) in a single entity to amplify the efficacy of near-field focusing. Such a complex and unprecedented morphology at the nanoscale was realized through on-demand multistepwise reactions. Triangular nanoprisms were first sculpted into circular nanorings, followed by a series of chemical etching and deposition reactions eventually leading to ANITs wherein thin metal bridges hold the structure together without any linker molecules. In the multistepwise reaction, the well-faceted growth pattern of Au, which induces the growth of two distinctive flat facets in a lateral direction, is important to evolve the morphology from single to multiple nanorings. Although our synthesis proceeds through multiple steps in one batch without purification steps, it shows a remarkably high yield (>∼90%) at the final stage. The obtained high degree of homogeneity (in both shape and size) of the resulting ANITs allowed us to systematically investigate the corresponding localized surface plasmon resonance (LSPR) coupling with varying nanoring arrangements and observe their single-particle surface enhanced Raman scattering (SERS). Surprisingly, individual ANITs exhibited an enormously large enhancement factor (∼109), which confirms their superior near-field focusing relative to other reported nanoparticles.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.1c05189