Tensor-Network Codes
We introduce tensor-network stabilizer codes which come with a natural tensor-network decoder. These codes can correspond to any geometry, but, as a special case, we generalize holographic codes beyond those constructed from perfect or block-perfect isometries, and we give an example that correspond...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-07, Vol.127 (4), p.1-040507, Article 040507 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce tensor-network stabilizer codes which come with a natural tensor-network decoder. These codes can correspond to any geometry, but, as a special case, we generalize holographic codes beyond those constructed from perfect or block-perfect isometries, and we give an example that corresponds to neither. Using the tensor-network decoder, we find a threshold of 18.8% for this code under depolarizing noise. We show that, for holographic codes, the exact tensor-network decoder (with no bond-dimension truncation) has polynomial complexity in the number of physical qubits, even for locally correlated noise, making this the first efficient decoder for holographic codes against Pauli noise and, also, a rare example of a decoder that is both efficient and exact. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.127.040507 |