Insights into complete nitrate removal in one-stage nitritation-anammox by coupling heterotrophic denitrification
Nitritation-anammox has been considered to be the most promising process for nitrogen (N) removal from wastewater. However, the anammox reaction still produces an amount of nitrate, which cannot be removed further. This study hypothesizes that heterotrophic denitrification can be an appealing option...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2021-11, Vol.298, p.113431-113431, Article 113431 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitritation-anammox has been considered to be the most promising process for nitrogen (N) removal from wastewater. However, the anammox reaction still produces an amount of nitrate, which cannot be removed further. This study hypothesizes that heterotrophic denitrification can be an appealing option to remove the residual nitrate in the one-stage nitritation-anammox process. Through monitoring N-removal performance and microbial community succession of a laboratory microaerobic reactor, the effect of four different levels of oxygen supply on nitrate removal was investigated. The reactor was continuously fed with real manure-free piggery wastewater containing ~240 mg NH4+-N/L and chemical oxygen demand (COD)/total nitrogen (TN) ratio of less than 1 for 180 days. With a high influent loading rate of 0.7 kg N/(m3·d), efficient total nitrogen removal (>80 %) was achieved during stable operation of dissolved oxygen (DO) concentrations between 0.3 and 0.6 mg O2/L, indicating N-removal via the nitritation-anammox pathway in the low-carbon wastewater treatment. At the same time, the effluent nitrate reduced with decreased oxygen supply and completely depleted at DO of 0.3 ± 0.1 mg O2/L. In addition to oxygen, preventing ammonia nitrogen from falling to very low levels (80 % is achieved in a DO range of 0.3–0.6 mg O2/L.•Complete nitrate removal is demonstrated under DO of 0.3 mg O2/L.•The nitrate removal performance is highly relevant to residual ammonium level. |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2021.113431 |