A deep learning based ensemble learning method for epileptic seizure prediction

In epilepsy, patients suffer from seizures which cannot be controlled with medicines or surgical treatments in more than 30% of the cases. Prediction of epileptic seizures is extremely important so that they can be controlled with medication before they actually occur. Researchers have proposed mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2021-09, Vol.136, p.104710-104710, Article 104710
Hauptverfasser: Muhammad Usman, Syed, Khalid, Shehzad, Bashir, Sadaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In epilepsy, patients suffer from seizures which cannot be controlled with medicines or surgical treatments in more than 30% of the cases. Prediction of epileptic seizures is extremely important so that they can be controlled with medication before they actually occur. Researchers have proposed multiple machine/deep learning based methods to predict epileptic seizures; however, accurate prediction of epileptic seizures with low false positive rate is still a challenge. In this research, we propose a deep learning based ensemble learning method to predict epileptic seizures. In the proposed method, EEG signals are preprocessed using empirical mode decomposition followed by bandpass filtering for noise removal. The class imbalance problem has been mitigated with synthetic preictal segments generated using generative adversarial networks. A three-layer customized convolutional neural network has been proposed to extract automated features from preprocessed EEG signals and combined them with handcrafted features to get a comprehensive feature set. The feature set is then used to train an ensemble classifier that combines the output of SVM, CNN and LSTM using Model agnostic meta learning. An average sensitivity of 96.28% and specificity of 95.65% with an average anticipation time of 33 min on all subjects of CHBMIT has been achieved by the proposed method, whereas, on American epilepsy society-Kaggle seizure prediction dataset, an average sensitivity of 94.2% and specificity of 95.8% has been achieved on all subjects. •We propose a novel method for epileptic seizure prediction using EEG signals.•Combined feature set of handcrafted and automated features using CNN is proposed.•An ensemble classifier for classification between preictal and interictal states.•Our proposed method achieves sensitivity and specificity of 96.28% and 95.65%.•An average anticipation time of 33 min has been achieved.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2021.104710