Multiple evidences of dynamic heterogeneity in hydrophobic deep eutectic solvents

Hydrophobic deep eutectic solvents (HDESs) have gained immense popularity because of their promising applications in extraction processes. Herein, we employ atomistic molecular dynamics simulations to unveil the dynamics of DL-menthol (DLM) based HDESs with hexanoic (C6), octanoic (C8), and decanoic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-07, Vol.155 (4), p.044502-044502
Hauptverfasser: Malik, Akshay, Kashyap, Hemant K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrophobic deep eutectic solvents (HDESs) have gained immense popularity because of their promising applications in extraction processes. Herein, we employ atomistic molecular dynamics simulations to unveil the dynamics of DL-menthol (DLM) based HDESs with hexanoic (C6), octanoic (C8), and decanoic (C10) acids as hydrogen bond donors. The particular focus is on understanding the nature of dynamics with changing acid tail length. For all three HDESs, two modes of hydrogen bond relaxations are observed. We observe longer hydrogen bond lifetimes of the inter-molecular hydrogen bonding interactions between the carbonyl oxygen of the acid and hydroxyl oxygen of menthol with hydroxyl hydrogen of both acids and menthol. We infer strong hydrogen bonding between them compared to that between hydroxyl oxygen of acids and hydroxyl hydrogens of menthol and acids, marked by a faster decay rate and shorter hydrogen bond lifetime. The translational dynamics of the species in the HDES becomes slower with increasing tail length of the organic acid. Slightly enhanced caging is also observed for the HDES with a longer tail length of the acids. The evidence of dynamic heterogeneity in the displacements of the component molecules is observed in all the HDESs. From the values of the α-relaxation time scale, we observe that the molecular displacements become random in a shorter time scale for DLM-C6. The analysis of the self-van Hove function reveals that the overall distance covered by DLM and acid molecules in the respective HDES is more than what is expected from ideal diffusion. As marked by the shorter time scale associated with hole filling, the diffusion of the oxygen atom of menthol and the carbonyl oxygen of acid from one site to the other is fastest for hexanoic acid containing HDES.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0054699