A Universal Strategy toward the Precise Regulation of Initial Coulombic Efficiency of Li‐Rich Mn‐Based Cathode Materials

Li‐rich Mn‐based cathode materials (LRMs) are potential cathode materials for high energy density lithium‐ion batteries. However, low initial Coulombic efficiency (ICE) severely hinders the commercialization of LRM. Herein, a facile oleic acid‐assisted interface engineering is put forward to precise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-09, Vol.33 (38), p.e2103173-n/a
Hauptverfasser: Guo, Weibin, Zhang, Chenying, Zhang, Yinggan, Lin, Liang, He, Wei, Xie, Qingshui, Sa, Baisheng, Wang, Laisen, Peng, Dong‐Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Li‐rich Mn‐based cathode materials (LRMs) are potential cathode materials for high energy density lithium‐ion batteries. However, low initial Coulombic efficiency (ICE) severely hinders the commercialization of LRM. Herein, a facile oleic acid‐assisted interface engineering is put forward to precisely control the ICE, enhance reversible capacity and rate performance of LRM effectively. As a result, the ICE of LRM can be precisely adjusted from 84.1% to 100.7%, and a very high specific capacity of 330 mAh g−1 at 0.1 C, as well as outstanding rate capability with a fascinating specific capacity of 250 mAh g−1 at 5 C, are harvested. Theoretical calculations reveal that the introduced cation/anion double defects can reduce the diffusion barrier of Li+ ions, and in situ surface reconstruction layer can induce a self‐built‐in electric field to stabilize the surface lattice oxygen. Moreover, this facile interface engineering is universal and can enhance the ICEs of other kinds of LRM effectively. This work provides a valuable new idea for improving the comprehensive electrochemical performance of LRM through multistrategy collaborative interface engineering technology. Introduced cation/anion double defects can reduce the interface charge transfer resistance and enhance the Li+ ion diffusion coefficient. The induced in situ surface reconstruction layer can increase the electronic conductivity and stabilize the surface lattice oxygen. As a result, the initial Coulombic efficiency of Li‐rich Mn‐based cathode material is controlled precisely.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202103173