Backscatter measurements from a vegetation-like structure
There has been renewed interest in the remote sensing community in understanding the fundamentals associated with the interaction of electromagnetic energy with natural targets. This is especially true in the microwave frequency regime, where the size of the target geometry may be of the order of th...
Gespeichert in:
Veröffentlicht in: | International journal of remote sensing 1990-07, Vol.11 (7), p.1205-1222 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There has been renewed interest in the remote sensing community in understanding the fundamentals associated with the interaction of electromagnetic energy with natural targets. This is especially true in the microwave frequency regime, where the size of the target geometry may be of the order of the probing wavelength. In order to assess properly the performance of scattering theories, both the system and target parameters must be well defined. This is a difficult task when dealing with distributed target structures such as vegetation. The attempt of this research is to construct an artificial model for the simulation of a vegetation canopy with well-defined target parameters. Backscatter measurements can then be correlated with a known target geometry. The scattering measurements present the X-band frequency response of the simulated target for three different canopy leaf distributions. |
---|---|
ISSN: | 0143-1161 1366-5901 |
DOI: | 10.1080/01431169008955089 |