Seed-borne fungal endophytes constrain reproductive success of host plants under ozone pollution

Tropospheric ozone is among the global change factors that pose a threat to plants and microorganisms. Symbiotic microorganisms can assist plants to cope with stress, but their role in the tolerance of plants to ozone is poorly understood. Here, we subjected endophyte-symbiotic and non-symbiotic pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2021-11, Vol.202, p.111773-111773, Article 111773
Hauptverfasser: Ueno, Andrea C., Gundel, Pedro E., Ghersa, Claudio M., Agathokleous, Evgenios, Martínez-Ghersa, M. Alejandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tropospheric ozone is among the global change factors that pose a threat to plants and microorganisms. Symbiotic microorganisms can assist plants to cope with stress, but their role in the tolerance of plants to ozone is poorly understood. Here, we subjected endophyte-symbiotic and non-symbiotic plants of Lolium multiflorum, an annual species widely distributed in temperate grasslands, to high and low (i.e., charcoal-filtered air) ozone levels at vegetative and reproductive phases. Exposure to high ozone reduced leaf photochemical efficiency and greenness in both symbiotic and non-symbiotic plants. However, ozone-induced oxidative damage at biochemical level (i.e., lipid peroxidation) was mostly detected in symbiotic plants. Ozone exposure at the vegetative phase did not affect the reproductive investment in seeds, indicating full recovery from stress. Ozone exposure at the reproductive phase reduced biomass and seed production only in symbiotic plants indicating a symbiont-associated cost. At low ozone, endophyte-symbiotic plants showed a steeper slope in the relationship between seed number and seed weight (i.e., a number-weight trade-off) compared to non-symbiotic plants. However, when plants were treated at the reproductive phase, ozone increased the imbalance between seed number and seed weight in both endophyte-symbiotic and non-symbiotic plants. Plants with endophytes at the reproductive stage produced fewer seeds, which were not compensated by increased seed weight. Thus, fungal mycelium growing within ovaries or ozone-induced antioxidant systems may result in costs that finally depress the fitness of plants. Despite ozone pollution could destabilize plant-endophyte mutualisms and render them dysfunctional, other endophyte-mediated benefits (e.g., resistance to herbivory, tolerance to drought) could over-compensate these losses and explain the high incidence of the symbiosis in nature. •Symbiotic and non-symbiotic plants were exposed to low and high ozone (O3).•Plant fitness was more sensitive to O3 at reproductive than vegetative stages.•Symbiotic plants exposed to O3 at flowering displayed reduced investment in reproduction.•O3 caused a seed number−seed weight trade-off of non-symbiotic plants without compromising fitness.•Low frequency of symbiotic plants may be found in populations under O3 pollution.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2021.111773