Regression models for order‐of‐addition experiments

The purpose of order‐of‐addition (OofA) experiments is to identify the best order in a sequence of m components in a system. Such experiments may be analyzed by various regression models, the most popular ones being based on pairwise ordering (PWO) factors or on component‐position (CP) factors. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2021-12, Vol.63 (8), p.1673-1687
Hauptverfasser: Piepho, Hans‐Peter, Williams, Emlyn R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of order‐of‐addition (OofA) experiments is to identify the best order in a sequence of m components in a system. Such experiments may be analyzed by various regression models, the most popular ones being based on pairwise ordering (PWO) factors or on component‐position (CP) factors. This paper reviews these models and extensions and proposes a new class of models based on response surface (RS) regression using component position numbers as predictor variables. Using two published examples, it is shown that RS models can be quite competitive. In case of model uncertainty, we advocate the use of model averaging for analysis. The averaging idea leads naturally to a design approach based on a compound optimality criterion assigning weights to each candidate model.
ISSN:0323-3847
1521-4036
DOI:10.1002/bimj.202100048