Antifracture, Antibacterial, and Anti-inflammatory Hydrogels Consisting of Silver-Embedded Curdlan Nanofibrils
The bacterial exopolysaccharide Curdlan has a unique collagen-like triple helical structure and immune-modulation activities. Although there have been several types of Curdlan gels reported for antibacterial or wound healing purposes, none of them exhibit favorable mechanical properties for clinical...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-08, Vol.13 (31), p.36747-36756 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The bacterial exopolysaccharide Curdlan has a unique collagen-like triple helical structure and immune-modulation activities. Although there have been several types of Curdlan gels reported for antibacterial or wound healing purposes, none of them exhibit favorable mechanical properties for clinically applicable wound healing materials. Herein, we present a two-step approach for preparing Ag-embedded Curdlan hydrogels that are highly soft but are very stretchable compared with common polysaccharide-based hydrogels. Ag ions were first reduced in a diluted Curdlan solution to form AgNP-decorated triple helices. Then, the aqueous solution consisting of Curdlan/Ag nanoparticles was mixed with a dimethyl sulfoxide solution consisting of a high concentration of Curdlan. This mixing triggered the conformation transformation of Curdlan random coils into triple helices, and then the helices were further packed into semicrystalline nanofibrils of ∼20 nm in diameter. Due to the presence of semicrystalline fibrils, this novel Curdlan hydrogel exhibits a fracture strain of ∼350% and fracture stress of ∼0.2 MPa at a water content of ∼97%. This nanofibril hydrogel supported the attachment, spreading, and growth of fibroblasts and effectively inhibited the growth of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Moreover, the hydrogels downregulated NO production and proinflammatory gene expression levels in lipopolysaccharide (LPS)-stimulated macrophages but did not change the anti-inflammatory gene expression levels in IL-4-stimulated macrophages. In an animal study, these hydrogels accelerated wound healing in a bacteria-infected mice skin wound model. These results validate the further development of Curdlan/AgNPs nanofibril hydrogels in clinical wound management. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c06603 |