Doubly Modulated Optical Lattice Clock: Interference and Topology
The quantum system under periodical modulation is the simplest path to understand the quantum nonequilibrium system because it can be well described by the effective static Floquet Hamiltonian. Under the stroboscopic measurement, the initial phase is usually irrelevant. However, if two uncorrelated...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-07, Vol.127 (3), p.1-033601, Article 033601 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quantum system under periodical modulation is the simplest path to understand the quantum nonequilibrium system because it can be well described by the effective static Floquet Hamiltonian. Under the stroboscopic measurement, the initial phase is usually irrelevant. However, if two uncorrelated parameters are modulated, their relative phase cannot be gauged out so that the physics can be dramatically changed. Here, we simultaneously modulate the frequency of the lattice laser and the Rabi frequency in an optical lattice clock (OLC) system. Thanks to the ultrahigh precision and ultrastability of the OLC, the relative phase could be fine-tuned. As a smoking gun, we observed the interference between two Floquet channels. Finally, by experimentally detecting the eigenenergies, we demonstrate the relation between the effective Floquet Hamiltonian and the one-dimensional topological insulator with a high winding number. Our experiment not only provides a direction for detecting the phase effect but also paves a way in simulating the quantum topological phase in the OLC platform. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.127.033601 |