Sources of PM2.5 and its responses to emission reduction strategies in the Central Plains Economic Region in China: Implications for the impacts of COVID-19

The Central Plains Economic Region (CPER) located along the transport path to the Beijing-Tianjin-Hebei area has experienced severe PM2.5 pollution in recent years. However, few modeling studies have been performed on the sources of PM2.5, especially the impacts of emission reduction strategies. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2021-11, Vol.288, p.117783-117783, Article 117783
Hauptverfasser: Du, Huiyun, Li, Jie, Wang, Zifa, Yang, Wenyi, Chen, Xueshun, Wei, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Central Plains Economic Region (CPER) located along the transport path to the Beijing-Tianjin-Hebei area has experienced severe PM2.5 pollution in recent years. However, few modeling studies have been performed on the sources of PM2.5, especially the impacts of emission reduction strategies. In this study, the Nested Air Quality Prediction Model System (NAQPMS) with an online tracer-tagging module was adopted to investigate source sectors of PM2.5 and a series of sensitivity tests were conducted to investigate the impacts of different sector-based mitigation strategies on PM2.5 pollution. The response surfaces of pollutants to sector-based emission changes were built. The results showed that resident-related sector (resident and agriculture), fugitive dust, traffic and industry emissions were the main sources of PM2.5 in Zhengzhou, contributing 49%, 19%, 15% and 13%, respectively. Response surfaces of pollutants to sector-based emission changes in Henan revealed that the combined reduction of resident-related sector and industry emissions efficiently decreased PM2.5 in Zhengzhou. However, reduced emissions in only the Henan region barely satisfied the national air quality standard of 75 μg/m3, whereas a 50%–60% reduction in resident-related sector and industry emissions over the whole region could reach this goal. On severely polluted days, even a 60% reduction in these two sectors over the whole region was insufficient to satisfy the standard of 75 μg/m3. Moreover, a reduction in traffic emissions resulted in an increase in the O3 concentration. The results of the response surface method showed that PM2.5 in Zhengzhou decreased by 19% in response to the COVID-19 lockdown, which approached the observed reduction of 21%, indicating that the response surface method could be employed to study the impacts of the COVID-19 lockdown on air pollution. This study provides a scientific reference for the formulation of pollution mitigation strategies in the CPER. [Display omitted] •Main source sectors of PM2.5 in the Central Plains Economic Region are revealed.•The response surfaces of pollutants to sector-based emission changes are built.•The response surfaces can be used to study the impacts of COVID-19.•Multisector and regional joint control are needed to reduce pollution. Response surfaces of PM2.5 to sector-based emission changes in the Central Plains Economic Region were constructed and can be used to study the impacts of the COVID-19 lockdown on air pollut
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2021.117783