CTCF chromatin residence time controls three-dimensional genome organization, gene expression and DNA methylation in pluripotent cells
The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lack...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2021-08, Vol.23 (8), p.881-893 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lacking individual ZFs to identify additional determinants of CTCF positioning and function. While ZF1 and ZF8–ZF11 are not essential for cell survival, ZF8 deletion strikingly increases the DNA binding off-rate of mutant CTCF, resulting in reduced CTCF chromatin residence time. Loss of ZF8 results in widespread weakening of topologically associating domains, aberrant gene expression and increased genome-wide DNA methylation. Thus, important chromatin-templated processes rely on accurate CTCF chromatin residence time, which we propose depends on local sequence and chromatin context as well as global CTCF protein concentration.
Soochit et al. report that the residence time of CTCF on chromatin is controlled by its zinc finger 8 domain and determines chromatin organization, DNA methylation and transcriptional robustness in mouse embryonic stem cells. |
---|---|
ISSN: | 1465-7392 1476-4679 |
DOI: | 10.1038/s41556-021-00722-w |