The synergy between miR-486–5p and tamoxifen causes profound cell death of tamoxifen-resistant breast cancer cells

Breast cancer (BC) is the most common type of malignancy in women. A subset of breast cancers show resistance to endocrine-based therapies. The estrogen receptor (ER) plays a critical role in developing hormone-dependent BC. Loss of ER contributes to resistance to tamoxifen therapy and may contribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2021-09, Vol.141, p.111925-111925, Article 111925
Hauptverfasser: Mansoori, Behzad, Najafi, Souzan, Mohammadi, Ali, AsadollahSeraj, Haleh, Savadi, Pouria, Mansoori, Behnaz, Nazari, Afsaneh, Mokhtarzadeh, Ahad, Roshani, Elmira, Duijf, Pascal HG, Cho, William Chi-Shing, Baradaran, Behzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Breast cancer (BC) is the most common type of malignancy in women. A subset of breast cancers show resistance to endocrine-based therapies. The estrogen receptor (ER) plays a critical role in developing hormone-dependent BC. Loss of ER contributes to resistance to tamoxifen therapy and may contribute to mortality. Thus, it is crucial to overcome this problem. Here, using luciferase reporter assays, qRT-PCR, and Western blot analyses, we demonstrate that the microRNA miR-486–5p targets HMGA1 mRNA, decreasing its mRNA and protein levels in ER-positive (ER+) BC cells. Consistently, miR-486–5p is significantly downregulated, whereas HMGA1 is considerably upregulated in ER+ BC samples. Remarkably, while both miR-486–5p and tamoxifen individually cause G2/M cell cycle arrest, combination treatment synergistically causes profound cell death, specifically in tamoxifen-resistant ER+ cells but not in tamoxifen-sensitive ER+ cells. Combined treatment with miR-486–5p and tamoxifen also additively reduces cell migration, invasion, colony formation, mammary spheroid formation and a CD24-CD44+ cell population, representing decreased cancer stemness. However, these phenomena are independent of the tamoxifen responsiveness of the ER+ BC cells. Thus, miR-486–5p and tamoxifen exhibit additive and synergistic tumor-suppressive effects, most importantly causing profound cell death specifically in tamoxifen-resistant BC cells. Therefore, our work suggests that combining miR-486–5p replacement therapy with tamoxifen treatment is a promising strategy to treat endocrine therapy-resistant BC.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2021.111925