Responses of sediment resistome, virulence factors and potential pathogens to decades of antibiotics pollution in a shrimp aquafarm

Aquaculture ecosystem has become a hotspot of antibiotics resistance genes (ARGs) dissemination, owing to the abuse of prophylactic antibiotics. However, it is still unclear how and to what extent ARGs respond to the increasing antibiotic pollution, a trend as expected and as has occurred. Herein, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-11, Vol.794, p.148760-148760, Article 148760
Hauptverfasser: Lu, Jiaqi, Zhang, Xinxu, Wang, Chaohua, Li, Meng, Chen, Jiong, Xiong, Jinbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aquaculture ecosystem has become a hotspot of antibiotics resistance genes (ARGs) dissemination, owing to the abuse of prophylactic antibiotics. However, it is still unclear how and to what extent ARGs respond to the increasing antibiotic pollution, a trend as expected and as has occurred. Herein, a significant sediment antibiotic pollution gradient was detected along a drainage ditch after decades of shrimp aquaculture. The increasing antibiotic pollution evidently promoted the diversities and tailored the community structures of ARGs, mobile genetic elements (MGEs), virulence factors and pathogens. The profiles of ARGs and MGEs were directly altered by the concentrations of terramycin and sulphadimidine. By contrast, virulence factors were primarily affected by nutrient variables in sediment. The pathogens potentially hosted diverse virulence factors and ARGs. More than half of the detected ARGs subtypes non-linearly responded to increasing antibiotic pollution, as supported by significant tipping points. However, we screened seven antibiotic concentration discriminatory ARGs that could serve as independent variable for quantitatively diagnosing total antibiotic concentration. Co-occurrence analysis depicted that notorious aquaculture pathogens of Vibrio harveyi and V. parahaemolyticus potentially hosted ARGs that confer resistance to multiple antibiotics, while priority pathogens for humankind, e.g., Helicobacter pylori and Staphylococcus aureus, could have harbored redundant virulence factors. Collectively, the significant tipping points and antibiotic concentration-discriminatory ARGs may translate into warning index and diagnostic approach for diagnosing antibiotic pollution. Our findings provided novel insights into the interplay among ARGs, MGEs, pathogens, virulence factors and geochemical variables under the scenario of increasing antibiotic pollution. [Display omitted] •Increasing antibiotic pollution tailors the structures of ARGs, MGEs, virulence factors and pathogens.•ARGs subtypes non-linearly respond to increasing antibiotic pollution.•Antibiotic concentration discriminatory ARGs accurately diagnose in situ antibiotic concentration.•Virulence factors and ARGs synchronously affect the potential pathogens.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.148760