Edge-Rich Bicrystalline 1T/2H-MoS2 Cocatalyst-Decorated {110} Terminated CeO2 Nanorods for Photocatalytic Hydrogen Evolution
Developing all-solid-state Z-scheme systems with highly active photocatalysts are of huge interest in realizing long-term solar-to-fuel conversion. Here we reported an innovative hybrid of {110}-oriented CeO2 nanorods with edge-enriched bicrystalline 1T/2H-MoS2 coupling as efficient photocatalysts f...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-08, Vol.13 (30), p.35818-35827 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35827 |
---|---|
container_issue | 30 |
container_start_page | 35818 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Zhu, Chengzhang Xian, Qiming He, Qiuying Chen, Chuanxiang Zou, Weixin Sun, Cheng Wang, Shaobin Duan, Xiaoguang |
description | Developing all-solid-state Z-scheme systems with highly active photocatalysts are of huge interest in realizing long-term solar-to-fuel conversion. Here we reported an innovative hybrid of {110}-oriented CeO2 nanorods with edge-enriched bicrystalline 1T/2H-MoS2 coupling as efficient photocatalysts for water splitting. In the composites, the metallic 1T phase acts as an excellent solid state electron mediator in the Z-scheme, while the 2H phase and CeO2 are the adsorption sites of the photosensitizer and reactant (H2O), respectively. Through optimal structure and phase engineering, 1T/2H-MoS2@CeO2 heterojunctions simultaneously achieve high charge separation efficiency, proliferated density of exposed active sites, and excellent affinity to reactant molecules, reaching a superior hydrogen evolution rate of 73.1 μmol/h with an apparent quantum yield of 8.2% at 420 nm. Furthermore, density functional theory calculations show that 1T/2H-MoS2@CeO2 possesses the advantages of intensive electronic interaction from the built-in electric field (negative MoS2 and positive charged CeO2) and reduced H2O adsorption/dissociation energies. This work sheds light on the design of on-demand noble-metal-free Z-scheme heterostructures for solar energy conversion. |
doi_str_mv | 10.1021/acsami.1c09651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2555640200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555640200</sourcerecordid><originalsourceid>FETCH-LOGICAL-a219t-5e4fc96fe8e3d03d7b3dd1ab6155b98d03e5ff3225c938b339b0ad1e1d657f563</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKevPudRhG65pOnaR53TCdOJzueSJtcto2s0aYWh_u9WN3y647vfHcdHyDmwATAOQ6WD2tgBaJYlEg5ID7I4jlIu-eF_H8fH5CSENWOJ4Ez2yNfELDF6tnpFr63229CoqrI1UlgM-TR6cC-cjp1WHe5m0Q1q51WDhn4CsG-6QL-x9R8Y45zTR1U770ygpfP0aeWa_WpjNZ1ujXdLrOnkw1VtY119So5KVQU829c-eb2dLMbTaDa_ux9fzSLFIWsiiXGps6TEFIVhwowKYQyoIgEpiyztEMqyFJxLnYm0ECIrmDKAYBI5KmUi-uRid_fNu_cWQ5NvbNBYVapG14acSymTmHHGuujlLtrZzNeu9XX3WA4s_1Wc7xTne8XiB3UYcJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555640200</pqid></control><display><type>article</type><title>Edge-Rich Bicrystalline 1T/2H-MoS2 Cocatalyst-Decorated {110} Terminated CeO2 Nanorods for Photocatalytic Hydrogen Evolution</title><source>ACS Publications</source><creator>Zhu, Chengzhang ; Xian, Qiming ; He, Qiuying ; Chen, Chuanxiang ; Zou, Weixin ; Sun, Cheng ; Wang, Shaobin ; Duan, Xiaoguang</creator><creatorcontrib>Zhu, Chengzhang ; Xian, Qiming ; He, Qiuying ; Chen, Chuanxiang ; Zou, Weixin ; Sun, Cheng ; Wang, Shaobin ; Duan, Xiaoguang</creatorcontrib><description>Developing all-solid-state Z-scheme systems with highly active photocatalysts are of huge interest in realizing long-term solar-to-fuel conversion. Here we reported an innovative hybrid of {110}-oriented CeO2 nanorods with edge-enriched bicrystalline 1T/2H-MoS2 coupling as efficient photocatalysts for water splitting. In the composites, the metallic 1T phase acts as an excellent solid state electron mediator in the Z-scheme, while the 2H phase and CeO2 are the adsorption sites of the photosensitizer and reactant (H2O), respectively. Through optimal structure and phase engineering, 1T/2H-MoS2@CeO2 heterojunctions simultaneously achieve high charge separation efficiency, proliferated density of exposed active sites, and excellent affinity to reactant molecules, reaching a superior hydrogen evolution rate of 73.1 μmol/h with an apparent quantum yield of 8.2% at 420 nm. Furthermore, density functional theory calculations show that 1T/2H-MoS2@CeO2 possesses the advantages of intensive electronic interaction from the built-in electric field (negative MoS2 and positive charged CeO2) and reduced H2O adsorption/dissociation energies. This work sheds light on the design of on-demand noble-metal-free Z-scheme heterostructures for solar energy conversion.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c09651</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2021-08, Vol.13 (30), p.35818-35827</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9635-5807 ; 0000-0002-6965-6425 ; 0000-0002-1751-9162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c09651$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c09651$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Zhu, Chengzhang</creatorcontrib><creatorcontrib>Xian, Qiming</creatorcontrib><creatorcontrib>He, Qiuying</creatorcontrib><creatorcontrib>Chen, Chuanxiang</creatorcontrib><creatorcontrib>Zou, Weixin</creatorcontrib><creatorcontrib>Sun, Cheng</creatorcontrib><creatorcontrib>Wang, Shaobin</creatorcontrib><creatorcontrib>Duan, Xiaoguang</creatorcontrib><title>Edge-Rich Bicrystalline 1T/2H-MoS2 Cocatalyst-Decorated {110} Terminated CeO2 Nanorods for Photocatalytic Hydrogen Evolution</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Developing all-solid-state Z-scheme systems with highly active photocatalysts are of huge interest in realizing long-term solar-to-fuel conversion. Here we reported an innovative hybrid of {110}-oriented CeO2 nanorods with edge-enriched bicrystalline 1T/2H-MoS2 coupling as efficient photocatalysts for water splitting. In the composites, the metallic 1T phase acts as an excellent solid state electron mediator in the Z-scheme, while the 2H phase and CeO2 are the adsorption sites of the photosensitizer and reactant (H2O), respectively. Through optimal structure and phase engineering, 1T/2H-MoS2@CeO2 heterojunctions simultaneously achieve high charge separation efficiency, proliferated density of exposed active sites, and excellent affinity to reactant molecules, reaching a superior hydrogen evolution rate of 73.1 μmol/h with an apparent quantum yield of 8.2% at 420 nm. Furthermore, density functional theory calculations show that 1T/2H-MoS2@CeO2 possesses the advantages of intensive electronic interaction from the built-in electric field (negative MoS2 and positive charged CeO2) and reduced H2O adsorption/dissociation energies. This work sheds light on the design of on-demand noble-metal-free Z-scheme heterostructures for solar energy conversion.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQh4MoOKevPudRhG65pOnaR53TCdOJzueSJtcto2s0aYWh_u9WN3y647vfHcdHyDmwATAOQ6WD2tgBaJYlEg5ID7I4jlIu-eF_H8fH5CSENWOJ4Ez2yNfELDF6tnpFr63229CoqrI1UlgM-TR6cC-cjp1WHe5m0Q1q51WDhn4CsG-6QL-x9R8Y45zTR1U770ygpfP0aeWa_WpjNZ1ujXdLrOnkw1VtY119So5KVQU829c-eb2dLMbTaDa_ux9fzSLFIWsiiXGps6TEFIVhwowKYQyoIgEpiyztEMqyFJxLnYm0ECIrmDKAYBI5KmUi-uRid_fNu_cWQ5NvbNBYVapG14acSymTmHHGuujlLtrZzNeu9XX3WA4s_1Wc7xTne8XiB3UYcJ8</recordid><startdate>20210804</startdate><enddate>20210804</enddate><creator>Zhu, Chengzhang</creator><creator>Xian, Qiming</creator><creator>He, Qiuying</creator><creator>Chen, Chuanxiang</creator><creator>Zou, Weixin</creator><creator>Sun, Cheng</creator><creator>Wang, Shaobin</creator><creator>Duan, Xiaoguang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9635-5807</orcidid><orcidid>https://orcid.org/0000-0002-6965-6425</orcidid><orcidid>https://orcid.org/0000-0002-1751-9162</orcidid></search><sort><creationdate>20210804</creationdate><title>Edge-Rich Bicrystalline 1T/2H-MoS2 Cocatalyst-Decorated {110} Terminated CeO2 Nanorods for Photocatalytic Hydrogen Evolution</title><author>Zhu, Chengzhang ; Xian, Qiming ; He, Qiuying ; Chen, Chuanxiang ; Zou, Weixin ; Sun, Cheng ; Wang, Shaobin ; Duan, Xiaoguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a219t-5e4fc96fe8e3d03d7b3dd1ab6155b98d03e5ff3225c938b339b0ad1e1d657f563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chengzhang</creatorcontrib><creatorcontrib>Xian, Qiming</creatorcontrib><creatorcontrib>He, Qiuying</creatorcontrib><creatorcontrib>Chen, Chuanxiang</creatorcontrib><creatorcontrib>Zou, Weixin</creatorcontrib><creatorcontrib>Sun, Cheng</creatorcontrib><creatorcontrib>Wang, Shaobin</creatorcontrib><creatorcontrib>Duan, Xiaoguang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chengzhang</au><au>Xian, Qiming</au><au>He, Qiuying</au><au>Chen, Chuanxiang</au><au>Zou, Weixin</au><au>Sun, Cheng</au><au>Wang, Shaobin</au><au>Duan, Xiaoguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-Rich Bicrystalline 1T/2H-MoS2 Cocatalyst-Decorated {110} Terminated CeO2 Nanorods for Photocatalytic Hydrogen Evolution</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-08-04</date><risdate>2021</risdate><volume>13</volume><issue>30</issue><spage>35818</spage><epage>35827</epage><pages>35818-35827</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Developing all-solid-state Z-scheme systems with highly active photocatalysts are of huge interest in realizing long-term solar-to-fuel conversion. Here we reported an innovative hybrid of {110}-oriented CeO2 nanorods with edge-enriched bicrystalline 1T/2H-MoS2 coupling as efficient photocatalysts for water splitting. In the composites, the metallic 1T phase acts as an excellent solid state electron mediator in the Z-scheme, while the 2H phase and CeO2 are the adsorption sites of the photosensitizer and reactant (H2O), respectively. Through optimal structure and phase engineering, 1T/2H-MoS2@CeO2 heterojunctions simultaneously achieve high charge separation efficiency, proliferated density of exposed active sites, and excellent affinity to reactant molecules, reaching a superior hydrogen evolution rate of 73.1 μmol/h with an apparent quantum yield of 8.2% at 420 nm. Furthermore, density functional theory calculations show that 1T/2H-MoS2@CeO2 possesses the advantages of intensive electronic interaction from the built-in electric field (negative MoS2 and positive charged CeO2) and reduced H2O adsorption/dissociation energies. This work sheds light on the design of on-demand noble-metal-free Z-scheme heterostructures for solar energy conversion.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c09651</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9635-5807</orcidid><orcidid>https://orcid.org/0000-0002-6965-6425</orcidid><orcidid>https://orcid.org/0000-0002-1751-9162</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-08, Vol.13 (30), p.35818-35827 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2555640200 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Edge-Rich Bicrystalline 1T/2H-MoS2 Cocatalyst-Decorated {110} Terminated CeO2 Nanorods for Photocatalytic Hydrogen Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-Rich%20Bicrystalline%201T/2H-MoS2%20Cocatalyst-Decorated%20%7B110%7D%20Terminated%20CeO2%20Nanorods%20for%20Photocatalytic%20Hydrogen%20Evolution&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhu,%20Chengzhang&rft.date=2021-08-04&rft.volume=13&rft.issue=30&rft.spage=35818&rft.epage=35827&rft.pages=35818-35827&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c09651&rft_dat=%3Cproquest_acs_j%3E2555640200%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555640200&rft_id=info:pmid/&rfr_iscdi=true |