Edge-Rich Bicrystalline 1T/2H-MoS2 Cocatalyst-Decorated {110} Terminated CeO2 Nanorods for Photocatalytic Hydrogen Evolution
Developing all-solid-state Z-scheme systems with highly active photocatalysts are of huge interest in realizing long-term solar-to-fuel conversion. Here we reported an innovative hybrid of {110}-oriented CeO2 nanorods with edge-enriched bicrystalline 1T/2H-MoS2 coupling as efficient photocatalysts f...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-08, Vol.13 (30), p.35818-35827 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing all-solid-state Z-scheme systems with highly active photocatalysts are of huge interest in realizing long-term solar-to-fuel conversion. Here we reported an innovative hybrid of {110}-oriented CeO2 nanorods with edge-enriched bicrystalline 1T/2H-MoS2 coupling as efficient photocatalysts for water splitting. In the composites, the metallic 1T phase acts as an excellent solid state electron mediator in the Z-scheme, while the 2H phase and CeO2 are the adsorption sites of the photosensitizer and reactant (H2O), respectively. Through optimal structure and phase engineering, 1T/2H-MoS2@CeO2 heterojunctions simultaneously achieve high charge separation efficiency, proliferated density of exposed active sites, and excellent affinity to reactant molecules, reaching a superior hydrogen evolution rate of 73.1 μmol/h with an apparent quantum yield of 8.2% at 420 nm. Furthermore, density functional theory calculations show that 1T/2H-MoS2@CeO2 possesses the advantages of intensive electronic interaction from the built-in electric field (negative MoS2 and positive charged CeO2) and reduced H2O adsorption/dissociation energies. This work sheds light on the design of on-demand noble-metal-free Z-scheme heterostructures for solar energy conversion. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c09651 |