Shared friends counterbalance shared enemies in old forests

Mycorrhizal mutualisms are nearly ubiquitous across plant communities. Yet, it is still unknown whether facilitation among plants arises primarily from these mycorrhizal networks or from physical and ecological attributes of plants themselves. Here, we tested the relative contributions of mycorrhiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2021-11, Vol.102 (11), p.1-15
Hauptverfasser: Germain, Sara J., Lutz, James A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mycorrhizal mutualisms are nearly ubiquitous across plant communities. Yet, it is still unknown whether facilitation among plants arises primarily from these mycorrhizal networks or from physical and ecological attributes of plants themselves. Here, we tested the relative contributions of mycorrhizae and plants to both positive and negative biotic interactions to determine whether plant–soil feedbacks with mycorrhizae neutralize competition and enemies within multitrophic forest community networks. We used Bayesian hierarchical generalized linear modeling to examine mycorrhizal-guild-specific and mortality-cause-specific woody plant survival compiled from a spatially and temporally explicit data set comprising 101,096 woody plants from three mixed-conifer forests across western North America. We found positive plant–soil feedbacks for large-diameter trees: species-rich woody plant communities indirectly promoted large tree survival when connected via mycorrhizal networks. Shared mycorrhizae primarily counterbalanced apparent competition mediated by tree enemies (e.g., bark beetles, soil pathogens) rather than diffuse competition between plants. We did not find the same survival benefits for small trees or shrubs. Our findings suggest that lower largediameter tree mortality susceptibility in species-rich temperate forests resulted from greater access to shared mycorrhizal networks. The interrelated importance of aboveground and belowground biodiversity to large tree survival may be critical for counteracting increasing pathogen, bark beetle, and density threats.
ISSN:0012-9658
1939-9170
DOI:10.1002/ecy.3495