Spatial Control of Dynamic p–i–n Junctions in Transition Metal Dichalcogenide Light-Emitting Devices
Emerging transition metal dichalcogenides (TMDCs) offer an attractive platform for investigating functional light-emitting devices, such as flexible devices, quantum and chiral devices, high-performance optical modulators, and ultralow threshold lasers. In these devices, the key operation is to cont...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-08, Vol.15 (8), p.12911-12921 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Emerging transition metal dichalcogenides (TMDCs) offer an attractive platform for investigating functional light-emitting devices, such as flexible devices, quantum and chiral devices, high-performance optical modulators, and ultralow threshold lasers. In these devices, the key operation is to control the light-emitting position, that is, the spatial position of the recombination zone to generate electroluminescence, which permits precise light guides/passes/confinement to ensure favorable device performance. Although various structures of TMDC light-emitting devices have been demonstrated, including the transistor configuration and heterostructured diodes, it is still difficult to tune the light-emitting position precisely owing to the structural device complexity. In this study, we fabricated two-terminal light-emitting devices with chemically synthesized WSe2, MoSe2, and WS2 monolayers, and performed direct observations of their electroluminescence, from which we discovered a divergence in their light-emitting positions. Subsequently, we propose a method to associate spatial electroluminescence imaging with transport properties among different samples; consequently, a common rule for determining the locations of recombination zones is revealed. Owing to dynamic carrier accumulations and p–i–n junction formations, the light-emitting positions in electrolyte-based devices can be tuned continuously. The proposed method will expand the device applicability for designing functional optoelectronic applications based on TMDCs. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.1c01242 |