Heparan sulfate analogues regulate tumor-derived exosome formation that attenuates exosome functions in tumor processes

Heparan sulfate (HS) is involved in many biological activities, including the biogenesis and uptake of exosomes, which are related to the occurrence and development of tumors. This study investigated the role of HS analogues (heparin, low molecular weight heparin, and 6-O-desulfated heparin) in modu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2021-09, Vol.187, p.481-491
Hauptverfasser: Wu, Xiaotao, Kang, Mingzhu, Wang, Danhui, Zhu, Min, Hu, Yiwei, Zhang, Yan, Deng, Chao, Chen, Jinghua, Teng, Liping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heparan sulfate (HS) is involved in many biological activities, including the biogenesis and uptake of exosomes, which are related to the occurrence and development of tumors. This study investigated the role of HS analogues (heparin, low molecular weight heparin, and 6-O-desulfated heparin) in modulating exosome secretion, composition and functions. Exosomes derived from B16F10 cells exposed to different HS analogues were isolated and characterized by TEM, western blotting and Nanosight analyses. The number, size and protein cargo of exosomes secreted by HS analogues-induced B16F10 cells were detected. The findings indicated the reduced tumor-derived exosome secretion and protein cargo as reflected by lower levels of CD63, TSG101, heparinase and IL-6 in exosomes derived from heparin-induced B16F10 cells as compared with 6-O-desulfated heparin-induced tumor cells. Further functional assays demonstrated that exosomes from tumor cells exposed to heparin weakened tumor proliferation, migration and invasion most significantly among various exosomes derived from B16F10 cells treated with different HS analogues. Moreover, the sulfate group at 6-O position of heparan sulfate has been proved to play an important role in tumor-derived exosome formation and functions. This study suggested a vital view to develop more specific and efficient HS-based strategies in cancer treatment for targeting tumor-derived exosomes. •HS analogues modulated exosomes secretion, composition and functions.•Heparin reduced tumor-derived exosomes secretion and protein cargo.•Heparin-induced exosomes weakened tumor proliferation, migration and invasion.•6-O sulfation in HS played an important role in exosomes formation and functions.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2021.07.110