Interpreting Bottom-Up Decision-Making of CNNs via Hierarchical Inference
With the great success of convolutional neural networks (CNNs), interpretation of their internal network mechanism has been increasingly critical, while the network decision-making logic is still an open issue. In the bottom-up hierarchical logic of neuroscience, the decision-making process can be d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2021, Vol.30, p.6701-6714 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the great success of convolutional neural networks (CNNs), interpretation of their internal network mechanism has been increasingly critical, while the network decision-making logic is still an open issue. In the bottom-up hierarchical logic of neuroscience, the decision-making process can be deduced from a series of sub-decision-making processes from low to high levels. Inspired by this, we propose the Concept-harmonized HierArchical INference (CHAIN) interpretation scheme. In CHAIN, a network decision-making process from shallow to deep layers is interpreted by the hierarchical backward inference based on visual concepts from high to low semantic levels. Firstly, we learned a general hierarchical visual-concept representation in CNN layered feature space by concept harmonizing model on a large concept dataset. Secondly, for interpreting a specific network decision-making process, we conduct the concept-harmonized hierarchical inference backward from the highest to the lowest semantic level. Specifically, the network learning for a target concept at a deeper layer is disassembled into that for concepts at shallower layers. Finally, a specific network decision-making process is explained as a form of concept-harmonized hierarchical inference, which is intuitively comparable to the bottom-up hierarchical visual recognition way. Quantitative and qualitative experiments demonstrate the effectiveness of the proposed CHAIN at both instance and class levels. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2021.3097187 |