Enantioselective bioaccumulation and detoxification mechanisms of earthworms (Eisenia fetida) exposed to mandipropamid

As a novel chiral amide fungicide, the enantioselective behaviors of mandipropamid in the soil environment are unclear. Furthermore, there is a need to understand the stress response mechanisms of soil organisms exposed to mandipropamid isomers. Therefore, the selective bioaccumulation of mandipropa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-11, Vol.796, p.149051-149051, Article 149051
Hauptverfasser: Fang, Kuan, Han, Lingxi, Liu, Yalei, Fang, Jianwei, Wang, Xiuguo, Liu, Tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a novel chiral amide fungicide, the enantioselective behaviors of mandipropamid in the soil environment are unclear. Furthermore, there is a need to understand the stress response mechanisms of soil organisms exposed to mandipropamid isomers. Therefore, the selective bioaccumulation of mandipropamid isomers and detoxification mechanisms of earthworms (Eisenia fetida) were investigated in this study. Our results suggested that the enantioselective bioaccumulation of mandipropamid in earthworms occurred with the preferential enrichment of S-(+)-isomer. The activities of detoxification enzymes, such as cytochrome P450 (CYP450), glutathione-S-transferases (GST), and carboxylesterase (CarE), changed significantly upon exposure to S-(+)- and R-(-)-mandipropamid (particularly for CYP450 and GST). A transcriptome analysis revealed that more differentially expressed genes (DEGs) were observed under S-(+)-isomer exposure (15,798) than those under R-(-)-isomer exposure (12,222), as compared to the control group. These DEGs were mainly enriched in bile secretion and thyroid hormone signaling pathways, which were related to the detoxification process in earthworms. Moreover, the 20 DEGs, which exhibited the most profound changes (such as CYP2 and CYP3A4) in these pathways, were screened, clustered, and observed to be mainly involved in regulating the detoxification function of earthworm cells. These results indicated that detoxification systems played an essential role in the stress response to mandipropamid exposure. Additionally, earthworms were more sensitive to the stress induced by S-(+)-mandipropamid than that induced by R-(-)-mandipropamid. This is the first study to elucidate the mandipropamid detoxification mechanism of earthworms at the enantiomer level, which can be beneficial for remediating chiral pollutants. [Display omitted] •S-(+)-isomer enriched faster in earthworm than that of R-(-)-isomer•CYP450 and GST were superior to CarE in the detoxification of mandipropamid isomers•The DEGs in earthworms induced by S-(+)- isomer were greater than that by R-(-)-isomer•Bile secretion and thyroid hormone signaling pathways were significantly enriched•S-(+)-isomer may have a higher risk to earthworms than R-(-)-isomer
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.149051