Insight into Liquid Polymorphism from the Complex Phase Behavior of a Simple Model

We systematically explored the phase behavior of the hard-core two-scale ramp model suggested by Jagla [Phys. Rev. E 63, 061501 (2001)] using a combination of the nested sampling and free energy methods. The sampling revealed that the phase diagram of the Jagla potential is significantly richer than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-07, Vol.127 (1), p.1-015701, Article 015701
Hauptverfasser: Bartók, Albert P., Hantal, György, Pártay, Livia B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We systematically explored the phase behavior of the hard-core two-scale ramp model suggested by Jagla [Phys. Rev. E 63, 061501 (2001)] using a combination of the nested sampling and free energy methods. The sampling revealed that the phase diagram of the Jagla potential is significantly richer than previously anticipated, and we identified a family of new crystalline structures, which is stable over vast regions in the phase diagram. We showed that the new melting line is located at considerably higher temperature than the boundary between the low- and high-density liquid phases, which was previously suggested to lie in a thermodynamically stable region. The newly identified crystalline phases show unexpectedly complex structural features, some of which are shared with the high-pressure ice VI phase.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.127.015701