Mechanical alterations of the hippocampus in the APP/PS1 Alzheimer’s disease mouse model

There is increasing evidence of altered tissue mechanics in neurodegeneration. However, due to difficulties in mechanical testing procedures and the complexity of the brain, there is still little consensus on the role of mechanics in the onset and progression of neurodegenerative diseases. In the ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2021-10, Vol.122, p.104697-104697, Article 104697
Hauptverfasser: Antonovaite, Nelda, Hulshof, Lianne A., Huffels, Christiaan F.M., Hol, Elly M., Wadman, Wytse J., Iannuzzi, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is increasing evidence of altered tissue mechanics in neurodegeneration. However, due to difficulties in mechanical testing procedures and the complexity of the brain, there is still little consensus on the role of mechanics in the onset and progression of neurodegenerative diseases. In the case of Alzheimer’s disease (AD), magnetic resonance elastography (MRE) studies have indicated viscoelastic differences in the brain tissue of AD patients and healthy controls. However, there is a lack of viscoelastic data from contact mechanical testing at higher spatial resolution. Therefore, we report viscoelastic maps of the hippocampus obtained by a dynamic indentation on brain slices from the APP/PS1 mouse model where individual brain regions are resolved. A comparison of viscoelastic parameters shows that regions in the hippocampus of the APP/PS1 mice are significantly stiffer than wild-type (WT) mice and have increased viscous dissipation. Furthermore, indentation mapping at the cellular scale directly on the plaques and their surroundings did not show local alterations in stiffness although overall mechanical heterogeneity of the tissue was high (SD∼40%).
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2021.104697