Broadband, background-free methane absorption in the mid-infrared

Rotationally resolved, broadband absorption spectra of the fundamental vibrational transition of the asymmetric C–H stretch mode of methane are measured under single-laser-shot conditions using time-resolved optically gated absorption (TOGA). The TOGA approach exploits the difference in timescales b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-06, Vol.29 (13), p.21011-21019
Hauptverfasser: Stauffer, Hans U., Grib, Stephen W., Schumaker, S. Alexander, Roy, Sukesh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rotationally resolved, broadband absorption spectra of the fundamental vibrational transition of the asymmetric C–H stretch mode of methane are measured under single-laser-shot conditions using time-resolved optically gated absorption (TOGA). The TOGA approach exploits the difference in timescales between a broadband, fs-duration excitation source and the ps-duration absorption features induced by molecular absorption to allow effective suppression of the broadband background spectrum, thereby allowing for sensitive detection of multi-transition molecular spectra. This work extends the TOGA approach into the mid-infrared (mid-IR) spectral regime, allowing access to fundamental vibrational transitions while providing broadband access to multiple mid-IR transitions spanning ∼150 cm −1 (∼160 nm) near 3.3 μm, thereby highlighting the robustness of this technique beyond previously demonstrated electronic spectroscopy. Measurements are conducted in a heated gas cell to determine the accuracy of the simultaneous temperature and species-concentration measurements afforded by this single-shot approach in a well-characterized environment. Application of this approach toward fuel-rich methane–nitrogen–oxygen flames is also demonstrated.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.430315