Thermal design studies of high-power heterojunction bipolar transistors
A theoretical thermoelectro-feedback model has been developed for the thermal design of high-power GaAlAs/GaAs heterojunction bipolar transistors (HBTs). The power-handling capability, thermal instability, junction temperature, and current distributions of HBTs with multiple emitter fingers have bee...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 1989-05, Vol.36 (5), p.854-863 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A theoretical thermoelectro-feedback model has been developed for the thermal design of high-power GaAlAs/GaAs heterojunction bipolar transistors (HBTs). The power-handling capability, thermal instability, junction temperature, and current distributions of HBTs with multiple emitter fingers have been numerically studied. The calculated results indicate that power HBTs on Si substrates (or with Si as the collector) have excellent potential power performance and reliability. The power-handling capability on Si is 3.5 and 2.7 times as large as that on GaAs and InP substrates, respectively. The peak junction temperature and temperature difference on the chip decrease in comparison to the commonly used Si homostructure power transistor with the same geometry and power dissipation. Thereby HBTs are promising for high-speed microwave and millimeter-wave applications. It has been also found that the nonuniform distribution of junction temperature and current can be greatly improved by a ballasting technique that uses unequal-valued emitter resistors.< > |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/16.299666 |