Utilization of Chlorella pyrenoidosa for Remediation of Common Effluent Treatment Plant Wastewater in Coupling with Co-relational Study: An Experimental Approach

Earlier investigations on biological methods of wastewater treatment have revealed that algal based wastewater treatment could be a green, cost effective and efficient approach for the removal of heavy metals. So, this study aimed to assess the potential of microalga Chlorella pyrenoidosa for remedi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of environmental contamination and toxicology 2022-03, Vol.108 (3), p.507-517
Hauptverfasser: Kothari, Richa, Pandey, Arya, Ahmad, Shamshad, Singh, Har Mohan, Pathak, Vinayak V., Tyagi, V. V., Kumar, Kapil, Sari, Ahmet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Earlier investigations on biological methods of wastewater treatment have revealed that algal based wastewater treatment could be a green, cost effective and efficient approach for the removal of heavy metals. So, this study aimed to assess the potential of microalga Chlorella pyrenoidosa for remediation of heavy metals (Cr, Cu, Pb, Zn, Cd, Mn, and Ni) from varying concentration (25%, 50%, 75 and 100%) of wastewater collected from Common Effluent Treatment Plant. Heavy metals such as Cr, Cu, Pb, Zn, Cd, Mn, and Ni have been removed significantly from the wastewater, with percentage removal ranging from 73%, 60%, 75%, 66%, 87%, 83%, and 74% with 50% test solution, 57%, 59%, 70%, 56%, 72%, 66%, and 62% with 75% test solution, and 47%, 55%, 56%, 71%, 61%, 77%, and 72% with 100% test solution respectively. Studies on biochemical assay (protein, carbohydrate, and pigment) of Chlorella pyrenoidosa were also an important part of the present investigation to understand the interaction of heavy metals with algal biochemical compounds using Pearson correlation co-efficient. Biomass grown in CETP wastewater can be used for synthesis of various fruitful value-added end products like bio-diesel, pharmaceutical products, cosmetic products, bio-adsorbent etc.
ISSN:0007-4861
1432-0800
DOI:10.1007/s00128-021-03292-7