Tuning oxygenated functional groups on biochar for water pollution control: A critical review
Biochar has attracted increasing attention in water pollution control, attributed to its various merits, e.g., tunable physico-chemical properties. The oxygenated functional groups (OFGs) on biochar are key active sites for removing pollutants from water through interfacial adsorption/redox reaction...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2021-10, Vol.420, p.126547-126547, Article 126547 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biochar has attracted increasing attention in water pollution control, attributed to its various merits, e.g., tunable physico-chemical properties. The oxygenated functional groups (OFGs) on biochar are key active sites for removing pollutants from water through interfacial adsorption/redox reaction. However, there is still a lack of comprehensive knowledge and perspective on tuning OFGs on biochar for enhanced performance in water pollution control. Here, this review highlighted the mechanisms of biochar OFGs in water pollution control, analyzed the strategies and mechanisms for tuning OFGs on biochar, and investigated the performances of biochars with tuned OFGs in removing inorganic/organic pollutants via adsorption/redox reactions. Specifically, strategies for tuning OFGs on biochar are far more than the well-recognized ex-situ oxidation of pristine biochar. These strategies include in-situ low temperature preservation of hydroxyl and carboxyl, in-/ex-situ oxidation of biochar, and in-/ex-situ grafting of carboxyl on biochar via cycloaddition/acylation reaction. The resultant biochars showed enhanced performances in adsorption (mainly mediated by hydroxyl, carboxyl and ketone through surface complexation, H-bonding, and electrostatic attraction) and redox reaction (mainly mediated by redox-active hydroxyl and ketone). Finally, this review presented future directions on developing biochar with specially tuned surface OFGs as a sustainable high-performance adsorbent/carbocatalyst for water pollution control.
[Display omitted]
•Functions of oxygenated functional groups (OFGs) on biochar are summarized.•Strategies for tuning OFGs on biochars are systematically reviewed.•Knowledge gaps on tuning OFGs on biochar for enhanced performances were proposed.•Tuning OFGs on biochar favors its application in adsorption/redox reactions. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2021.126547 |